
IJAICT Volume 7, Issue 2, February 2020
 ISSN 2348 – 9928

 Doi: 10.46532/ijaict-2020006 Published on 05 (2) 2020

Corresponding Author: D. Suganthi, RVS College of Engineering and Technology, Coimbatore, India 024

SERVER LOAD BALANCING USING LOAD
REBALANCING ALGORITHM

D. Suganthi N.Banuchanthiran V. Sridhar T. Rajeswari G. Sabareesh

Department of Computer Science and Engineering,
RVS College of Engineering and Technology,

Coimbatore, Tamilnadu, India

Abstract— Distributed systems are the building block for cloud
computing applications. In which the data is stored on a server and
accessed as if it is stored on the local client machine. Our proposal
is to allocate files uniformly as possible. Such that node has larger
number of chunks by load rebalancing algorithm.

Keywords— Load Rebalance, Distributed File System, Load
Balance.

I. INTRODUCTION

Distributed systems are specialized for large scale, dynamic
and data intensive applications. There are larger number of
files that are imbalanced. Load rebalancing provides a
mechanism in which the nodes are allocated uniformly as
possible to the files. the storage nodes are structured as
network based on distributed hash table.

Distributed hash table has the unique handle or identifier in
which they are assigned to the file.in which it has a additional
functionality that they are self-organize and self-repairable
that simplifies the system management.

This additionally reduces the network traffic and moment cost
and also exploiting the capable node helps in increasing the
performance .it maximizes the network bandwidth available in
normal applications. thus this method balances the node.
These file systems the node simultaneously serve computing
and storage function.

II. LITERATURE SURVEY

In this section we review a few related work on load
rebalancing algorithm and the working of distributed table
uniformly to other nodes .

In john byers research paper he proposed Distributed hash
tables have recently become a useful building block for a
variety of distributed applications. However, current schemes
based upon consistent hashing require both implementation

complexity and substantial storage overhead to achieve
desired load balancing goals.

He also defined that these goals can be achieved more simply
and more cost-effectively.

In david r.karger he used two protocols to refine the consistent
hashing data structure that underlies the Chord (and Koorde)
P2P network. Both preserve Chord’s logarithmic query time
and near-optimal data migration cost. Our first protocol
balances the distribution of the key Address space to nodes,
which yields a load-balanced system when the DHT maps
items “randomly” into the address space. The second protocol
aims to directly balance the distribution of items among the
nodes.

As the result of the two analysis they balanced the load
efficiently and the distributed hash table mainly uses the
balancing distribution among the nodes .

III. PROBLEM DEFINITION

The storage nodes are structured as a network based on
distributed hash tables (dhts), discovering a file chunk can
simply refer to rapid key lookup in dhts, given that a unique
handle (or identifier) is assigned to each file chunk. Dhts
enable nodes to self-organize and -repair while constantly
offering lookup functionality in node dynamism, simplifying
the system provision and management.

Our objective is to allocate the chunks of files as uniformly as
possible among the nodes such that no node manages an
excessive number of chunks. Additionally, we aim to reduce
network traffic (or movement cost) caused by rebalancing the
loads of nodes as much as possible to maximize the network
bandwidth available to normal applications. Exploiting
capable nodes to improve the system performance is, thus,
demanded.

© 2020 IJAICT (www.ijaict.com)

Corresponding Author: D. Suganthi, RVS College of Engineering and Technology, Coimbatore, India 025

IV. SYSTEM ARCHITECTURE

System architecture can comprise system components, the
externally visible properties of those components, the
relationships (e.g. the behavior) between them. It can provide
a plan from which products can be procured, and systems
developed, that will work together to implement the overall
system.

V. ROPOSED METHODOLOGY

 Client server authentication
 Analysis of network nodes
 Load Rebalancing

5.1 Client Server Authentication
If you are the new user going to consume the service then they
have to register first by providing necessary details. After
successful completion of sign up process, the user has to login
into the application by providing username and exact
password. The user has to provide exact username and
password which was provided at the time of registration, if
login success means it will take up to main page else it will
remain in the login page itself., and rms do not have to be
defined. Do not use abbreviations in the title or heads unless
they are unavoidable.

5.2 Analysis Of Network Nodes
In this module, we discover all network nodes name that are
connected through local area network. And we can create
customized distributed file system by selecting the nodes from

network computers. Once if you selected chunk nodes, then the
performance of all chunk nodes will be collected for analysis.






5.3 Load Rebalancing
Load Rebalancing module helps to balance the loads of node
while searching for requested file chunk. When the requested
file chunk is not presented in the central node, then load
rebalance helps to balance the load by seeking in chunk nodes.

VI. GIVEN INPUT EXPECTED OUTPUT

Modules Input Output

Authentication User identities such as
username, password

Granting
access

privilege

Analysis of network
nodes LAN communication Network

nodes list

Load rebalancing Imbalance loads Load
rebalance

VII. LOAD REBALANCING ALGORITHM

In our proposed algorithm, each chunk server node i first
estimate whether it is under loaded (light) or overloaded
(heavy) without global knowledge. A node is light if the
number of chunks it hosts is smaller than the threshold of (1-
∆l)a (where 0<=∆l< 1). In contrast, a heavy node manages the
number of chunks greater than(1+∆u)a , where 0<=∆l<1. ∆l
and ∆u are system parameters. In the following discussion, if a
node i departs and rejoins as a successor of another node j,
then we represent node i as node j +1, node j’s original
successor as node j + 2, the successor of node j’s original
successor as node j + 3, and so on. For each node i v, if node
i is light, then it seeks a heavy node and takes over at most a
chunks from the heavy node.

Step 1: we first present a load-balancing algorithm, in which
each node has global knowledge regarding the system that
leads to low movement cost and fast convergence.

User

NETWORK INTERFACE

Client
Applica

tion

User

Server
Applicat

ion

Node

Node

Node

Data
Base

Servi
ce

Distributed File

Send Retrieve

Discover
Network Nodes

Create DFS
Network

Collect
Performance of

Individual
Nodes

Service
Provid

er
View the

Performance
of DFS Nodes

IJAICT Volume 7, Issue 2, February 2020

© 2020 IJAICT (www.ijaict.com)

 ISSN 2348 – 9928
 Doi: 10.46532/ijaict-2020006 Published on 05 (2) 2020

© 2020 IJAICT (www.ijaict.com)

Corresponding Author: D. Suganthi, RVS College of Engineering and Technology, Coimbatore, India 026

Step 2: we then extend this algorithm for the situation that the
global knowledge is not available to each node without
degrading its performance.

Step 3: based on the global knowledge, if node i finds it is the
least-loaded node in the system, i leaves the system by
migrating its locally hosted chunks to its successor i + 1 and
then rejoins instantly as the successor of the heaviest node
(say, node j).

Step 4: to immediately relieve node j’s load, node i requests
min {lj _a, a} chunks from j. That is, node i requests a chunks
from the heaviest node j if j’s load exceeds 2a; otherwise, i
requests a load of lj _a from j to relieve j’s load.

VIII. CONCLUSION

Our proposal strives to balance the loads of nodes and reduce
the demanded movement cost as much as possible, while
taking advantage of physical network locality and node
heterogeneity. In the absence of representative real workloads
(i.e., the distributions of file chunks in a large scale storage
system) in the public domain, we have investigated the
performance of our proposal and compared it against
competing algorithms through synthesized probabilistic
distributions of file chunks.

References

[1] Rao, k. Lakshminarayanan, s. Surana, r. Karp, and i. Stoica, "load
balancing in structured p2p systems," proc. Second int'l workshop peer-
to-peer systems (iptps '02), pp. 68-79, feb. 2003.

[2] D. Karger and m. Ruhl, "simple efficient load balancing algorithms for
peer-to-peer systems," proc. 16th acm symp. Parallel algorithms and
architectures (spaa '04), pp. 36-43, june 2004.

[3] P. Ganesan, m. Bawa, and h. Garcia-molina, "online balancing of range-
partitioned data with applications to peer-to-peer systems," proc. 13th
int'l conf. Very large data bases (vldb '04), pp. 444-455, sept. 2004.

[4] J.w. byers, j. Considine, and m. Mitzenmacher, "simple load balancing
for distributed hash tables," proc. First int'l workshop peer-to-peer
systems (iptps '03), pp. 80-87, feb. 2003.

[5] G.s. manku, "balanced binary trees for id management and load balance
in distributed hash tables," proc. 23rd acm symp. Principles distributed
computing (podc '04), pp. 197-205, july 2004.

[6] Y. Zhu and y. Hu, "efficient, proximity-aware load balancing for dht-
based p2p systems," ieee trans. Parallel and distributed systems, vol. 16,
no. 4, pp. 349-361, apr. 2005.

[7] H. Shen and c.-z. Xu, "locality-aware and churn-resilient load balancing
algorithms in structured p2p networks," ieee trans. Parallel and
distributed systems, vol. 18, no. 6, pp. 849-862, june 2007.

[8] Q.h. vu, b.c. ooi, m. Rinard, and k.-l. Tan, "histogram-based global load
balancing in structured peer-to-peer systems," ieee trans. Knowledge
data eng., vol. 21, no. 4, pp. 595-608, apr. 2009.

[9] H.-c. Hsiao, h. Liao, s.-s. Chen, and k.-c. Huang, "load balance with
imperfect information in structured peer-to-peer systems," ieee trans.
Parallel distributed systems, vol. 22, no. 4, pp. 634-649,apr.2011.

IJAICT Volume 7, Issue 2, February 2020
 ISSN 2348 – 9928

 Doi: 10.46532/ijaict-2020006 Published on 05 (2) 2020

http://www.ijaict.com)

